ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF SOME SETS IN ℓ_{1}

TARAS BANAKH, ARTUR BARTOSZEWICZ, SZYMON GŁA̧B,
AND EMILIA SZYMONIK

Abstract

For a sequence $x \in \ell_{1} \backslash c_{00}$, one can consider the set $E(x)$ of all subsums of series $\sum_{n=1}^{\infty} x(n)$. Guthrie and Nymann proved that $E(x)$ is one of the following types of sets: (\mathcal{I}) a finite union of closed intervals; (\mathcal{C}) homeomorphic to the Cantor set; $(\mathcal{M C})$ homeomorphic to the set T of subsums of $\sum_{n=1}^{\infty} b(n)$ where $b(2 n-$ $1)=3 / 4^{n}$ and $b(2 n)=2 / 4^{n}$. By \mathcal{I}, \mathcal{C} and $\mathcal{M C}$ denote the sets of all sequences $x \in \ell_{1} \backslash c_{00}$, such that $E(x)$ has the property $(\mathcal{I}),(\mathcal{C})$ and $(\mathcal{M C})$, respectively. In this note we show that \mathcal{I} and \mathcal{C} are strongly \mathfrak{c}-algebrable and $\mathcal{M C}$ is \mathfrak{c}-lineable. We show that \mathcal{C} is a dense G_{δ}-set in ℓ_{1} and \mathcal{I} is a true \mathcal{F}_{σ}-set. Finally we show that \mathcal{I} is spaceable while \mathcal{C} is not spaceable.

1. Introduction

1.1. Lineability, algebrability and spaceability. Having a linear algebra A and its subset $E \subset A$ one can ask if $E \cup\{0\}$ contains a linear subalgebra A^{\prime} of A. Roughly speaking if the answer is positive, then E is algebrable. It is a recent trend in Mathematical Analysis to establish the algebrability of sets E which are far from being linear, that is $x, y \in E$ does not generally imply $x+y \in E$. Such algebrability results were obtained in sequence spaces (see [7], [6] and [8]) and in function spaces (see [2], [5], [4], [12] and [13]).

[^0]Assume that V is a linear space (linear algebra). A subset $E \subset V$ is called lineable (algebrable) whenever $E \cup\{0\}$ contains an infinite-dimensional linear space (infinitely generated linear algebra, respectively), see [3], [9] and [15]. For a cardinal $\kappa>\omega$, let us observe that the set E is κ-algebrable (i.e. it contains κ-generated linear algebra), if and only if it contains an algebra which is a κ-dimensional linear space (see [7]). Moreover, we say that a subset E of a commutative linear algebra V is strongly κ-algebrable ([7]), if there exists a κ-generated free algebra A contained in $E \cup\{0\}$.

Note, that $X=\left\{x_{\alpha}: \alpha<\kappa\right\} \subset E$ is a set of free generators of a free algebra $A \subset E$ if and only if the set X^{\prime} of elements of the form $x_{\alpha_{1}}^{k_{1}} x_{\alpha_{2}}^{k_{2}} \ldots x_{\alpha_{n}}^{k_{n}}$ is linearly independent and all linear combinations of elements from X^{\prime} are in $E \cup\{0\}$. It is easy to see that free algebras have no divisors of zero.

In practice, to prove κ-algebrability of set $E \subset V$ we have to find $X \subseteq E$ of cardinality κ such that for any polynomial P in n variables and any distinct $x_{1}, \ldots, x_{n} \in X$ we have either $P\left(x_{1}, \ldots, x_{n}\right) \in E$ or $P\left(x_{1}, \ldots, x_{n}\right)=0$. To prove the strong κ-algebrability of E we have to find $X \subset E,|X|=\kappa$, such that for any non-zero polynomial P and distinct $x_{1}, \ldots, x_{n} \in X$ we have $P\left(x_{1}, \ldots, x_{n}\right) \in E$.

In general, there are subsets of linear algebras which are algebrable but not strongly algebrable. Let c_{00} be a subset of c_{0} consisting of all sequences with real terms equal to zero from some place. Then the set c_{00} is algebrable in c_{0} but is not strongly 1 -algebrable [7].

Let X be a Banach space. The subset M of X is spaceable if $M \cup$ $\{0\}$ contains infinitely dimensional closed subspace Y of X. Since every infinitely dimensional Banach space contains linearly independent set of the cardinality continuum, the spaceability implies \mathfrak{c}-lineability. However, the spaceability is a much stronger property then c-lineability. The notions of spaceability and \mathfrak{c}-algebrability are incomparable. We will show that even \mathfrak{c}-algebrable dense $\mathcal{G}_{\boldsymbol{\delta}}$-sets in ℓ_{1} may not be spaceable. On the other hand, there are sets in c_{0} which are spaceable but not 1-algebrable (see [7]).
1.2. The subsums of series. Let $x \in \ell_{1}$. The set of all subsums of $\sum_{n=1}^{\infty} x(n)$, meaning the set of sums of all subseries of $\sum_{n=1}^{\infty} x(n)$, is defined by

$$
E(x)=\left\{a \in \mathbb{R}: \exists A \subset \mathbb{N} \quad \sum_{n \in A} x(n)=a\right\}
$$

Some authors call it the achievement set of x. The following theorem is due to Kakeya.

Theorem 1. [18]. Let $x \in \ell_{1}$
(1) If $x \notin c_{00}$, then $E(x)$ is a perfect compact set.
(2) If $|x(n)|>\sum_{i>n}|x(i)|$ for almost all n, then $E(x)$ is homeomorphic to the Cantor set.
(3) If $|x(n)| \leq \sum_{i>n}|x(i)|$ for n sufficiently large, then $E(x)$ is a finite union of closed intervals. In the case of non-increasing sequence x, the last inequality is also necessary to obtain $E(x)$ being a finite union of intervals.

Moreover, Kakeya conjectured that $E(x)$ is either nowhere dense or it is a finite union of intervals. Probably, the first counterexample to this conjecture was given (without a proof) by Weinstein and Shapiro [21] and, with a correct proof, by Ferens [11]. Guthrie and Nymann [16] showed that, for the sequence b given by the formulas $b(2 n-1)=\frac{3}{4^{n}}$ and $b(2 n)=\frac{2}{4^{n}}$, the set $T=E(b)$ is not a finite union of intervals but it has nonempty interior. In the same paper they formulated the following theorem

Theorem 2. [16] Let $x \in \ell_{1} \backslash c_{00}$, then $E(x)$ is one of the following sets:
(i) a finite union of closed intervals;
(ii) homeomorphic to the Cantor set;
(iii) homeomorphic to the set T.

A correct proof of the Guthrie and Nymann trichotomy was given by Nymann and Sáenz [20]. The sets homeomorphic to T are called Cantorvals (more precisely: M-Cantorvals). Note that Theorem 2 can be formulated as follows: The space ℓ_{1} is a disjoint union of the sets $c_{00}, \mathcal{I}, \mathcal{C}$ and $\mathcal{M C}$ where
\mathcal{I} consists of sequences x with $E(x)$ equal to a finite union of intervals, \mathcal{C} consists of sequences x with $E(x)$ homeomorphic to the Cantor set, and $\mathcal{M C}$ of x with $E(x)$ being an M-Cantorval.

For $x \in \ell_{1}$, let x^{\prime} be an arbitrary finite modification of x, and let $|x|$ denote the sequence $y \in \ell_{1}$ such that $y(n)=|x(n)|$. Then $x \in \mathcal{I} \Longleftrightarrow|x| \in \mathcal{I} \Longleftrightarrow$ $x^{\prime} \in \mathcal{I}$. The same equivalences hold for sets \mathcal{C} and $\mathcal{M C}$.

2. Algebraic substructures in \mathcal{C}, \mathcal{I} and $\mathcal{M C}$.

Jones in a very nice paper [17] gives the following example. Let $x(n)=$ $1 / 2^{n}$ and $y(n)=1 / 3^{n}$. Then clearly $x \in \mathcal{I}$ and $y \in \mathcal{C}$. Moreover, $x+y \in \mathcal{C}$ and $x-y \in \mathcal{I}$. Since $x=(x+y)-y$ and $y=-(x-y)+x$, then neither \mathcal{I} nor \mathcal{C} is closed under pointwise addition. However, in the present paper we show that the sets \mathcal{C}, \mathcal{I} and $\mathcal{M C}$ contain large (\mathfrak{c}-generated) algebraic structures. To prove the strong \mathfrak{c}-algebrability of \mathcal{C} and \mathcal{I}, we will combine Theorem 1 and the method of linearly independent exponents, which was successful in [6] and [7]. In the next theorem we construct generators as the powers of one geometric series $x_{q}\left(x_{q}(n)=q^{n}\right)$ for $0<q<\frac{1}{2}$. Clearly, by Theorem 1, $x_{q} \in \mathcal{C}$.

Theorem 3. \mathcal{C} is strongly \mathfrak{c}-algebrable.

Proof. Fix $q \in(0,1 / 2)$. Let $\left\{r_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a linearly independent (over the field of all rationals \mathbb{Q}) set of reals greater than 1 . Let $x_{\alpha}(n)=q^{r_{\alpha} n}$. We will show that the set $\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$ generates a free algebra \mathcal{A} which, except for the null sequence, is contained in \mathcal{C}.

To do this, we will show that for any $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \mathbb{R} \backslash\{0\}$, any matrix $\left[k_{i l}\right]_{i \leq m, l \leq j}$ of natural numbers with nonzero distinct rows, and any $\alpha_{1}<$ $\alpha_{2}<\cdots<\alpha_{j}<\mathfrak{c}$, the sequence x given by

$$
x(n)=P\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{j}}\right)(n)
$$

where

$$
P\left(z_{1}, \ldots, z_{j}\right)=\beta_{1} z_{1}^{k_{11}} z_{2}^{k_{12}} \ldots z_{j}^{k_{1 j}}+\cdots+\beta_{m} z_{1}^{k_{m 1}} z_{2}^{k_{m 2}} \ldots z_{j}^{k_{m j}}
$$

is in \mathcal{C}. In other words,

$$
x(n)=\beta_{1} q^{n\left(r_{\alpha_{1}} k_{11}+\cdots+r_{\alpha_{j}} k_{1 j}\right)}+\cdots+\beta_{m} q^{n\left(r_{\alpha_{1}} k_{m 1}+\cdots+r_{\alpha_{j}} k_{m j}\right)}
$$

Since $r_{\alpha_{1}}, \ldots, r_{\alpha_{j}}$ are linearly independent and the rows of $\left[k_{i l}\right]_{i \leqslant m, l \leqslant j}$ are distinct, the numbers $r_{1}:=r_{\alpha_{1}} k_{11}+\cdots+r_{\alpha_{j}} k_{1 j}, \ldots, r_{m}:=r_{\alpha_{1}} k_{m 1}+\cdots+$ $r_{\alpha_{j}} k_{m j}$ are distinct. We may assume that $r_{1}<\cdots<r_{m}$. Then

$$
\begin{gathered}
\frac{|x(n)|}{\sum_{i>n}|x(i)|}=\frac{\left|\beta_{1} q^{n r_{1}}+\cdots+\beta_{m} q^{n r_{m}}\right|}{\sum_{i>n}\left|\beta_{1} q^{i r_{1}}+\cdots+\beta_{m} q^{i r_{m}}\right|} \\
\geq \frac{\left|\beta_{1} q^{n r_{1}}+\cdots+\beta_{m} q^{n r_{m}}\right|}{\sum_{i>n}\left(\left|\beta_{1}\right| q^{i r_{1}}+\cdots+\left|\beta_{m}\right| q^{i r_{m}}\right)}=\frac{\left|\beta_{1} q^{n r_{1}}+\cdots+\beta_{m} q^{n r_{m}}\right|}{\frac{\left|\beta_{1}\right| q^{(n+1) r_{1}}}{1-q^{r_{1}}}+\cdots+\frac{\left|\beta_{m}\right| q^{(n+1) r_{m}}}{1-q^{r m}}} \\
\rightarrow \frac{1-q^{r_{1}}}{q^{r_{1}}}>1 .
\end{gathered}
$$

Therefore there is n_{0}, such that $|x(n)|>\sum_{i>n}|x(i)|$ for all $n \geq n_{0}$. Hence, by Theorem 1 , we obtain that $x \in \mathcal{C}$.

It is obvious that the geometric sequence x_{q}, even for $q>\frac{1}{2}$, is not useful to construct the generators of linear algebra contained in \mathcal{I}. Indeed, for sufficiently large exponent k, the sequence x_{q}^{k} belongs to \mathcal{C}. So, in the next theorem we use the harmonic series.

Theorem 4. \mathcal{I} is strongly \mathfrak{c}-algebrable.

Proof. Let K be a linearly independent subset of $(1, \infty)$ of cardinality \boldsymbol{c}. For $\alpha \in K$, let x_{α} be a sequence given by the formula $x_{\alpha}(n)=\frac{1}{n^{\alpha}}$. We will show that the set $\left\{x_{\alpha}: \alpha \in K\right\}$ generates a free algebra \mathcal{A} which is contained in $\mathcal{I} \cup\{0\}$. To do this, we will show that for any $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \mathbb{R} \backslash\{0\}$, any matrix $\left[k_{i l}\right]_{i \leq m, l \leq j}$ of natural numbers with nonzero distinct rows, and any $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{j}$, the sequence x defined by

$$
x=P\left(x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{j}}\right)
$$

$$
=\beta_{1} x_{\alpha_{1}}^{k_{11}} x_{\alpha_{2}}^{k_{12}} \ldots x_{\alpha_{j}}^{k_{1 j}}+\beta_{2} x_{\alpha_{1}}^{k_{21}} x_{\alpha_{2}}^{k_{22}} \ldots x_{\alpha_{j}}^{k_{2 j}}+\cdots+\beta_{m} x_{\alpha_{1}}^{k_{m 1}} x_{\alpha_{2}}^{k_{m 2}} \ldots x_{\alpha_{j}}^{k_{m j}}
$$

belongs to \mathcal{I}. We have

$$
\begin{gathered}
x(n)=P\left(x_{\alpha_{1}}, x_{\alpha_{2}}, \ldots, x_{\alpha_{j}}\right)(n) \\
=\beta_{1} \frac{1}{n^{\alpha_{1} k_{11}+\alpha_{2} k_{12}+\cdots+\alpha_{j} k_{1 j}}}+\cdots+\beta_{m} \frac{1}{n^{\alpha_{1} k_{m 1}+\alpha_{2} k_{m 2}+\cdots+\alpha_{j} k_{m j}}} \\
=\beta_{1} \frac{1}{n^{p_{1}}}+\beta_{2} \frac{1}{n^{p_{2}}}+\cdots+\beta_{j} \frac{1}{n^{p_{m}}}
\end{gathered}
$$

Note that p_{1}, \ldots, p_{m} are distinct. Assume that $p_{1}<p_{2}<\cdots<p_{m}$. We have

$$
\begin{gathered}
\frac{|x(n)|}{\sum_{k>n}|x(k)|}=\frac{\left|\beta_{1} \frac{1}{n^{p_{1}}}+\beta_{2} \frac{1}{n^{p_{2}}}+\cdots+\beta_{m} \frac{1}{n^{p_{m}}}\right|}{\sum_{k>n}\left|\beta_{1} \frac{1}{k^{p_{1}}}+\beta_{2} \frac{1}{k^{p_{2}}}+\cdots+\beta_{m} \frac{1}{k^{p_{m}}}\right|} \\
\leqslant \frac{\left|\beta_{1} \frac{1}{n^{p_{1}}}+\beta_{2} \frac{1}{n^{p_{2}}}+\cdots+\beta_{m} \frac{1}{n^{p_{m}}}\right|}{\sum_{k>n}\left(\left|\beta_{1} \frac{1}{k^{p_{1}}}\right|-\left|\beta_{2} \frac{1}{k^{p_{2}}}\right|-\cdots-\left|\beta_{m} \frac{1}{k^{p_{m}}}\right|\right)} \\
\leqslant \frac{\left|\beta_{1} \frac{1}{n^{p_{1}}}+\beta_{2} \frac{1}{n^{p_{2}}}+\cdots+\beta_{m} \frac{1}{n^{p_{m}}}\right|}{\left|\beta_{1}\right| \int_{n+1}^{\infty} \frac{1}{x^{p_{1}} d x-\left|\beta_{2}\right| \int_{n}^{\infty} \frac{1}{x^{p_{2}}} d x-\cdots-\left|\beta_{m}\right| \int_{n}^{\infty} \frac{1}{x^{p_{m}} d x}}} \begin{array}{c}
\left|\beta_{1}+\beta_{2} \frac{n^{p_{1}}}{n^{p_{2}}}+\cdots+\beta_{m} \frac{n^{p_{1}}}{n^{p_{m}}}\right| \\
n\left[\left|\beta_{1}\right| \frac{1}{p_{1}-1} \frac{n^{p_{1}-1}}{(n+1)^{p_{1}-1}}-\left|\beta_{2}\right| \frac{1}{p_{2}-1} \frac{n^{p_{1}-1}}{(n)^{p_{2}-1}}-\cdots-\left|\beta_{m}\right| \frac{1}{p_{m}-1} \frac{n^{p_{1}-1}}{(n)^{p_{m}-1}}\right]
\end{array} \\
\xrightarrow[n \rightarrow \infty]{n}<1 .
\end{gathered}
$$

Observe that the first inequality holds for n large enough. Therefore there is n_{0} such that $|x(n)| \leq \sum_{i>n}|x(i)|$ for any $n \geq n_{0}$. Hence, by Theorem 1 we obtain that $x \in \mathcal{I}$.

The method described in the next lemma belongs to the mathematical folklore and was used to construct sequences x 's with $E(x)$ being Cantorvals. We present its proof since we did not find it explicitly formulated in the mathematical literature.

Lemma 5. Let $x \in \ell_{1}$ be such that
(i) $E(x)$ contains an interval;
(ii) $|x(n)|>\sum_{i>n}|x(i)|$ for infinitely many n;
(iii) $\left|x_{n}\right| \geqslant\left|x_{n+1}\right|$ for almost all n.

Then $x \in \mathcal{M C}$.

Proof. By (ii)-(iii), the point x does not belong to \mathcal{I}. By (i), the point x does not belong to \mathcal{C}. Hence, by Theorem 2 we get $x \in \mathcal{M C}$.

Up to last years, there were only known a few examples of sequences belonging to $\mathcal{M C}$. These examples were not very useful to construct a large number of linearly independent sequences. Recently, Jones in [17] has constructed a one-parameter family of sequences in $\mathcal{M C}$. We shall use some modification of the example given by Jones in the proof of our next theorem.

Theorem 6. $\mathcal{M C}$ is \mathfrak{c}-lineable.

Proof. Let

$$
x_{q}=\left(4,3,2,4 q, 3 q, 2 q, 4 q^{2}, 3 q^{2}, 2 q^{2}, 4 q^{3}, \ldots\right)
$$

and

$$
y_{q}=\left(1,1,1,1,1, q, q, q, q, q, q^{2}, q^{2}, q^{2}, q^{2}, q^{2}, q^{3}, \ldots\right)
$$

for $q \in\left[\frac{1}{6}, \frac{2}{11}\right)$.
Observe that the sequences $x_{q}, q \in\left[\frac{1}{6}, \frac{2}{11}\right)$ are linearly independent. We need to show that each non-zero linear combination of sequences x_{q} fulfils the assumptions (i)-(iii) of Lemma 5 and therefore it is actually in $\mathcal{M C}$. To prove this, let us fix $q_{1}>q_{2}>\cdots>q_{m} \in\left[\frac{1}{6}, \frac{2}{11}\right), \beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \mathbb{R}$ and define sequences x and y by

$$
x(n)=\beta_{1} x_{q_{1}}(n)+\beta_{2} x_{q_{2}}(n)+\cdots+\beta_{m} x_{q_{m}}(n)
$$

and

$$
y(n)=\beta_{1} y_{q_{1}}(n)+\beta_{2} y_{q_{2}}(n)+\cdots+\beta_{m} y_{q_{m}}(n) .
$$

At first, we will check that for almost all n
(1) $2\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right|>9 \sum_{k>n}\left|\beta_{1} q_{1}{ }^{k}+\beta_{2} q_{2}{ }^{k}+\cdots+\beta_{m} q_{m}{ }^{k}\right|$.

We have
$\frac{2\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right|}{9 \sum_{k>n}\left|\beta_{1} q_{1}{ }^{k}+\beta_{2} q_{2}{ }^{k}+\cdots+\beta_{m} q_{m}{ }^{k}\right|} \geqslant \frac{2\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right|}{9 \sum_{k>n}\left|\beta_{1} q_{1}{ }^{k}\right|+\left|\beta_{2} q_{2}{ }^{k}\right|+\cdots+\left|\beta_{m} q_{m}{ }^{k}\right|}$

$$
=\frac{2\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right|}{9\left(\left|\beta_{1}\right| \frac{q_{1}{ }^{n+1}}{1-q_{1}}+\left|\beta_{2}\right| \frac{q_{2}^{n+1}}{1-q_{2}}+\cdots+\left|\beta_{m}\right| \frac{q_{m}^{n+1}}{1-q_{m}}\right)} \xrightarrow[n \rightarrow \infty]{\longrightarrow} \frac{2}{9} \cdot \frac{1-q_{1}}{q_{1}}>\frac{2}{9} \cdot \frac{1-\frac{2}{11}}{\frac{2}{11}}=1 .
$$

Note that if n is not divisible by 3 , then $|x(n)| \geqslant|x(n+1)|$. On the other hand, if $n=3 l$, then

$$
|x(n)|=2\left|\beta_{1} q_{1}^{l}+\cdots+\beta_{m} q_{m}^{l}\right|
$$

and

$$
\left.|x(n+1)|=3 \mid \beta_{1} q_{1}^{l+1}+\cdots+\beta_{m} q_{m}^{l+1}\right)\left|\leqslant 9 \sum_{k>l}\right| \beta_{1} q_{1}^{k}+\cdots+\beta_{m} q_{m}^{k} \mid .
$$

Hence by (1) we obtain $|x(n)| \geqslant|x(n+1)|$ for almost all n. By (1) we also have $|x(n)|>\sum_{i>n}|x(i)|$ for infinitely many n.
Now we will show that
(2) $\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right| \leqslant 5 \sum_{k>n}\left|\beta_{1} q_{1}{ }^{k}+\beta_{2} q_{2}{ }^{k}+\cdots+\beta_{m} q_{m}{ }^{k}\right|$.

We have

$$
\begin{gathered}
\frac{\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right|}{5 \sum_{k>n}\left|\beta_{1} q_{1}{ }^{k}+\beta_{2} q_{2}{ }^{k}+\cdots+\beta_{m} q_{m}{ }^{k}\right|} \leqslant \frac{\left|\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right|}{5\left|\sum_{k>n} \beta_{1} q_{1}{ }^{k}+\beta_{2} q_{2}{ }^{k}+\cdots+\beta_{m} q_{m}{ }^{k}\right|} \\
=\frac{\left|\beta_{1}+\beta_{2}\left(\frac{q_{2}}{q_{1}}\right)^{n}+\cdots+\beta_{m}\left(\frac{q_{m}}{q_{1}}\right)^{n}\right|}{5\left|\beta_{1} \sum_{i>0} q_{1}{ }^{i}+\beta_{2}\left(\frac{q_{2}}{q_{1}}\right)^{n} \sum_{i>0} q_{2}{ }^{i}+\cdots+\beta_{m}\left(\frac{q_{m}}{q_{1}}\right)^{n} \sum_{i>0} q_{m}{ }^{i}\right|} \\
\underset{n \rightarrow \infty}{\longrightarrow} \frac{1}{5} \cdot \frac{1-q_{1}}{q_{1}} \leqslant \frac{1}{5} \cdot \frac{1-\frac{1}{6}}{\frac{1}{6}}=1 .
\end{gathered}
$$

By (2) we obtain that $|y(n)| \leqslant \sum_{k>n}|y(k)|$ for almost all n. Therefore by Theorem 1, the set $E(y)$ is a finite union of closed intervals. Thus $E(y)$ has non-empty interior.

To end the proof we need to show that $E(x)$ has non-empty interior. We will prove that

$$
2 \sum_{n=0}\left(\beta_{1} q_{1}^{n}+\beta_{2} q_{2}^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right)+E(y) \subseteq E(x) .
$$

Let

$$
t \in 2 \sum_{n=0}\left(\beta_{1} q_{1}{ }^{n}+\beta_{2} q_{2}{ }^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right)+E(y) .
$$

Note that any element t of $E(y)$ is of the form

$$
\begin{gathered}
t=k_{0}\left(\beta_{1}+\beta_{2}+\cdots+\beta_{m}\right)+k_{1}\left(\beta_{1} q_{1}+\beta_{2} q_{2}+\cdots+\beta_{m} q_{m}\right) \\
+k_{2}\left(\beta_{1} q_{1}^{2}+\beta_{2} q_{2}^{2}+\cdots+\beta_{m} q_{m}^{2}\right)+\cdots
\end{gathered}
$$

where $k_{n} \in\{0,1,2,3,4,5\}$. Thus t is of the form

$$
\begin{gathered}
t=2 \sum_{n=0}\left(\beta_{1} q_{1}^{n}+\beta_{2} q_{2}^{n}+\cdots+\beta_{m} q_{m}{ }^{n}\right)+ \\
+\left[k_{0}\left(\beta_{1}+\beta_{2}+\cdots+\beta_{m}\right)+k_{1}\left(\beta_{1} q_{1}+\beta_{2} q_{2}+\cdots+\beta_{m} q_{m}\right)\right. \\
\left.+k_{2}\left(\beta_{1} q_{1}^{2}+\beta_{2} q_{2}^{2}+\cdots+\beta_{m} q_{m}^{2}\right)+\ldots\right] \\
=\left(2+k_{0}\right)\left(\beta_{1}+\beta_{2}+\cdots+\beta_{m}\right)+\left(2+k_{1}\right)\left(\beta_{1} q_{1}+\beta_{2} q_{2}+\cdots+\beta_{m} q_{m}\right)+ \\
+\left(2+k_{2}\right)\left(\beta_{1} q_{1}^{2}+\beta_{2} q_{2}^{2}+\cdots+\beta_{m}{q_{m}}^{2}\right)+\ldots
\end{gathered}
$$

Note that each number from $\{2,3,4,5,6,7\}$, that is every number of the form $2+k_{n}$, can be written as a sum of numbers $4,3,2$. Hence $t \in E(x)$ and $E(x)$ has non-empty interior. So $x \in \mathcal{M C}$.

3. The topological size and Borel Classification of \mathcal{C}, \mathcal{I} and

$\mathcal{M C}$.
Let us observe that all the sets $c_{00}, \mathcal{C}, \mathcal{I}$ and $\mathcal{M C}$ are dense in ℓ_{1}. Moreover, c_{00} is an \mathcal{F}_{σ}-set of the first category. We are interested in studying the topological size and Borel classification of considered sets. To do it, let us consider the hyperspace $H(\mathbb{R})$, that is the space of all non-empty compact subsets of reals, equipped with the Vietoris topology (see [19], 4F, pp.24-28). Recall, that the Vietoris topology is generated by the subbase of sets of the form $\{K \in H(\mathbb{R}): K \subset U\}$ and $\{K \in H(\mathbb{R}): K \cap U \neq \emptyset\}$ for all open sets U in \mathbb{R}. This topology is metrizable by the Hausdorff metric d_{H} given by the formula

$$
d_{H}(A, B)=\max \left\{\max _{t \in A} d(t, B), \max _{s \in B} d(s, A)\right\}
$$

where d is the natural metric in \mathbb{R}. It is known that the set N of all nowhere dense compact sets is a G_{δ}-set in $H(\mathbb{R})$ and the set F of all compact sets
with finite number of connected components is an \mathcal{F}_{σ}-set. To see this, it is enough to observe that

- K is nowhere dense if and only if for any set U_{n} from a fixed countable base of natural topology in \mathbb{R} there exists a set U_{m} from this base, such that $\operatorname{cl}\left(U_{m}\right) \subset U_{n}$ and $K \subset\left(\operatorname{cl}\left(U_{m}\right)\right)^{c}$;
- K has more then k components if and only if there exist pairwise disjoint open intervals $J_{1}, J_{2}, \ldots, J_{k+1}$, such that $K \subset J_{1} \cup J_{2} \cup \cdots \cup$ J_{k+1} and $K \cap J_{i} \neq \emptyset$ for $i=1,2, \ldots, k+1$.

Now, let us observe that if we assign the set $E(x)$ to the sequence $x \in \ell_{1}$, we actually define the function $E: \ell_{1} \rightarrow H(\mathbb{R})$.

Lemma 7. The function E is Lipschitz with Lipschitz constant $L=1$, hence it is continuous.

Proof. Let $t \in E(x)$. Then there exists a subset A of \mathbb{N} such that $t=$ $\sum_{n \in A} x(n)$. We have
$d(t, E(y)) \leqslant d\left(t, \sum_{n \in A} y(n)\right)=\left|\sum_{n \in A}(x(n)-y(n))\right| \leqslant \sum_{n \in \mathbb{N}}|(x(n)-y(n))|=\|x-y\|_{1}$
where $\|\cdot\|_{1}$ denotes the norm in ℓ_{1}. Hence, $d_{H}(E(x), E(y)) \leqslant\|x-y\|_{1}$.

Theorem 8. The set \mathcal{C} is a dense G_{δ}-set (and hence residual), \mathcal{I} is a true \mathcal{F}_{σ}-set (i.e. it is \mathcal{F}_{σ} but not \mathcal{G}_{δ}) of the first category, and $\mathcal{M C}$ is in the class $\left(\mathcal{F}_{\sigma \delta} \cap \mathcal{G}_{\delta \sigma}\right) \backslash \mathcal{G}_{\delta}$.

Proof. Let us observe that $\mathcal{C} \cup c_{00}=E^{-1}[N]$ and $\mathcal{I} \cup c_{00}=E^{-1}[F]$ where N, F, E are defined as before. Hence $\mathcal{C} \cup c_{00}$ is G_{δ}-set and $\mathcal{I} \cup c_{00}$ is $\mathcal{F}_{\sigma^{-}}$ set. Thus \mathcal{C} is $G_{\boldsymbol{\delta}}$-set (because c_{00} is \mathcal{F}_{σ}-set) and $\mathcal{I} \cup \mathcal{M C}$ is \mathcal{F}_{σ}. Moreover, $\mathcal{I}=\left(\mathcal{I} \cup c_{00}\right) \cap(\mathcal{I} \cup \mathcal{M C})$ is \mathcal{F}_{σ}-set, too. By the density of \mathcal{C}, \mathcal{C} is residual. Since \mathcal{I} is dense of the first category, it cannot be $\mathcal{G}_{\boldsymbol{\delta}}$-set. For the same reason, $\mathcal{M C}$ also cannot be \mathcal{G}_{δ}-set. Since $\mathcal{M C}$ is a difference of two \mathcal{F}_{σ}-sets, it is in the class $\mathcal{F}_{\sigma \delta} \cap \mathcal{G}_{\delta \sigma}$.

Remark 9. In [7] it was shown the following similar result by the use of quite different methods: the set of bounded sequences, with the set of limit points homeomorphic to the Cantor set, is strongly \mathfrak{c}-algebrable and residual in l^{∞}.

4. Spaceability

In this section we will show that \mathcal{I} is spaceable while \mathcal{C} is not spaceable. This shows that there is a subset M of ℓ_{1} containing a dense \mathcal{G}_{δ} subset and such that it contains a linear subspace of dimension \mathfrak{c}, but $Y \backslash M \neq \emptyset$ for any infinitely dimensional closed subspace Y of ℓ_{1}.

Theorem 10. Let \mathcal{I}_{1} be a subset of \mathcal{I} which consists of those $x \in \ell_{1}$ for which $E(x)$ is an interval. Then \mathcal{I}_{1} is spaceable.

Proof. Let A_{1}, A_{2}, \ldots be a partition of \mathbb{N} into infinitely many infinite subsets. Let $A_{n}=\left\{k_{n}^{1}<k_{n}^{2}<k_{n}^{3}<\ldots\right\}$. Define $x_{n} \in \ell_{1}$ in the following way. Let $x_{n}\left(k_{n}^{j}\right)=2^{-j}$ and $x_{n}(i)=0$ if $i \notin A_{n}$. Then $\left\|x_{n}\right\|_{1}=1$ and $\left\{x_{n}: x \in \mathbb{N}\right\}$ forms a normalised basic sequence. Let Y be a closed linear space generated by $\left\{x_{n}: x \in \mathbb{N}\right\}$. Then

$$
y \in Y \Longleftrightarrow \exists t \in \ell_{1}\left(y=\sum_{n=1}^{\infty} t(n) x_{n}\right) .
$$

Since $E\left(x_{n}\right)=[0,1]$, then $E\left(\sum_{n=1}^{\infty} t(n) x_{n}\right)=\bigcup_{n=1}^{\infty} I_{n}$ where I_{n} is an interval with endpoints 0 and $t(n)$. Put $t^{+}(n)=\max \{t(n), 0\}$ and $t^{-}(n)=$ $\min \{-t(n), 0\}$. Then $E\left(\sum_{n=1}^{\infty} t(n) x_{n}\right)=\left[\sum_{n=1}^{\infty} t^{-}(n), \sum_{n=1}^{\infty} t^{+}(n)\right]$ and the result follows.

Let us remark the very recent result by Bernal-González and Ordónez Cabrera [10, Theorem 2.2]. The authors gave sufficient conditions for spaceability of sets in Banach spaces. Using that result, one can prove spaceability of \mathcal{I} but it cannot be used to prove Theorem 10 , since the assumptions are not fulfilled.

However we do not know more results giving the sufficient conditions for a set in Banach space to not be spaceable. An interesting example of a nonspaceable set was given in the classical paper [14] by Gurarii where it was proved that the set of all differentiable functions from $C[0,1]$ is not spaceable. It is well known that the set of all differentiable functions in $C[0,1]$ is dense but meager. We will prove that even dense \mathcal{G}_{δ}-sets in Banach spaces may not be spaceable.

Theorem 11. Let Y be an infinitely dimensional closed subspace of ℓ_{1}. Then there is $y \in Y$ such that $E(y)$ contains an interval.

Proof. Let Y be an infinitely dimensional closed subspace of ℓ_{1}. Let $\varepsilon_{n} \searrow 0$. Let x_{1} be any nonzero element of Y with $\left\|x_{1}\right\|_{1}=1+\varepsilon_{1}$. Since $x_{1} \in \ell_{1}$, there is n_{1} with $\sum_{n=n_{1}+1}^{\infty}\left|x_{1}(n)\right| \leq \varepsilon_{1}$. Let E_{1} consist of finite sums $\sum_{n=1}^{n_{1}} \delta_{n} x_{1}(n)$ where $\delta_{i} \in\{0,1\}$. Then E_{1} is a finite set with $\min E_{1}=\sum_{n=1}^{n_{1}} x_{1}^{-}(n)$, $\max E_{1}=\sum_{n=1}^{n_{1}} x_{1}^{+}(n)$ and $1 \leq \max E_{1}-\min E_{1} \leq 1+\varepsilon_{1}$.

Let $Y_{1}=Y \cap\left\{x \in \ell_{1}: x(n)=0\right.$ for every $\left.n \leq n_{1}\right\}$. Since $\left\{x \in \ell_{1}\right.$: $x(n)=0$ for every $\left.n \leq n_{1}\right\}$ has a finite co-dimension, then Y_{1} is infinitely dimensional. Let x_{2} be any nonzero element of Y_{1} with $\left\|x_{2}\right\|_{1}=1+\varepsilon_{2}$. Since $x_{2} \in \ell_{1}$, there is $n_{2}>n_{1}$ with $\sum_{n=n_{2}+1}^{\infty}\left|x_{i}(n)\right| \leq \varepsilon_{2}, i=1,2$. Let E_{2} consist of finite sums $\sum_{n=n_{1}+1}^{n_{2}} \delta_{n} x_{2}(n)$, where $\delta_{i} \in\{0,1\}$. Then E_{2} is a finite set with $\min E_{2}=\sum_{n=n_{1}+1}^{n_{2}} x_{2}^{-}(n), \max E_{2}=\sum_{n=n_{1}+1}^{n_{2}} x_{2}^{+}(n)$ and $1 \leq \max E_{2}-\min E_{2} \leq 1+\varepsilon_{2}$.

Proceeding inductively, we define natural numbers $n_{1}<n_{2}<n_{3}<\ldots$, infinitely dimensional closed spaces $Y \supset Y_{1} \supset Y_{2} \supset \ldots$ such that $Y_{k}=$ $\left\{x \in Y: x(n)=0\right.$ for every $\left.n \leq n_{k}\right\}$, nonzero elements $x_{k} \in Y_{k-1}$ with $\left\|x_{k}\right\|_{1}=1+\varepsilon_{k}$ and $\sum_{n=n_{k}+1}^{\infty}\left|x_{i}(n)\right| \leq \varepsilon_{k}, i=1,2, \ldots, k$, and finite sets E_{k} consisting of sums $\sum_{n=n_{k-1}+1}^{n_{k}} \delta_{n} x_{k}(n)$ where $\delta_{i} \in\{0,1\}$. Note that $1 \leq \operatorname{diam}\left(E_{k}\right) \leq 1+\varepsilon_{k}$. Consider $y=\sum_{k=1}^{\infty} x_{k} / 2^{k}$. We claim that $E(y)$ contains an interval $I:=\left[\min E_{1}, \max E_{1}\right]$.

Note that for any $t \in I$ there is $t_{1} \in E_{1}$ with $\left|t-t_{1}\right| \leq\left(1+\varepsilon_{1}\right) / 2$. Since $1 \leq \operatorname{diam}\left(E_{2}\right) \leq 1+\varepsilon_{2}$, there is $t_{2} \in E_{1}+\frac{1}{2} E_{2}$ with $\left|t-t_{2}\right| \leq\left(1+\varepsilon_{2}\right) / 2^{2}$. Hence, there is $\tilde{t} \in E\left(x_{1}+x_{2} / 2\right)$ with $|t-\tilde{t}| \leq\left(1+\varepsilon_{2}\right) / 2^{2}+\varepsilon_{1}$. Since $1 \leq$ $\operatorname{diam}\left(E_{k}\right) \leq 1+\varepsilon_{k}$, then inductively we can find $t_{k} \in E_{1}+\frac{1}{2} E_{2}+\cdots+\frac{1}{2^{k-1}} E_{k}$ with $\left|t-t_{k}\right| \leq\left(1+\varepsilon_{k}\right) / 2^{k}$. Hence, there is $\tilde{t} \in E\left(x_{1}+x_{2} / 2+\cdots+x_{k} / 2^{k-1}\right)$ with $|t-\tilde{t}| \leq\left(1+\varepsilon_{k}\right) / 2^{k}+\varepsilon_{k-1}+\varepsilon_{k-1} / 2+\cdots+\varepsilon_{k-1} / 2^{k-1} \leq\left(1+\varepsilon_{k}\right) / 2^{k}+2 \varepsilon_{k-1}$. Since $E(y)$ is closed and it contains $E\left(x_{1}+x_{2} / 2+\cdots+x_{k} / 2^{k-1}\right)$, then $t \in E(y)$ and consequently $I \subset E(y)$.

Immediately we get the following.
Corollary 12. The set \mathcal{C} is not spaceable.
We end the paper with the list of open questions on the set $\mathcal{M C}$.

Problem 13. (i) Is $\mathcal{M C}$ c-algebrable?

(ii) Is $\mathcal{M C}$ an \mathcal{F}_{σ} subset of ℓ_{1} ?
(iii) Is $\mathcal{M C}$ spaceable?

Acknowledgment. The second and the third authors have been supported by the Polish Ministry of Science and Higher Education Grant No. N N201 414939 (2010-2013). We want to thank F. Prus-Wiśniowski who has informed us about the trichotomy of Guthrie and Nymann, and other references on subsums of series.

References

[1] A. Aizpuru, C. Pérez-Eslava, J. B. Seoane-Sepúlveda, Linear structure of sets of divergent sequences and series, Linear Algebra Appl. 418 (2006), no. 2-3, 595-598.
[2] R.M. Aron, J.A. Conejero, A. Peris, J.B. Seoane-Sepúlveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 3, 571-575.
[3] R.M. Aron, V.I. Gurariy, J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on \mathbb{R}, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803.
[4] R.M. Aron, D. Pérez-Garcia, J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175 (2006), no. 1, 83-90.
[5] R.M. Aron, J.B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on \mathbb{C}, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31.
[6] A. Bartoszewicz, S. Gła̧b, T. Poreda, On algebrability of nonabsolutely convergent series, Linear Algebra Appl. 435 (2011), no. 5, 1025-1028.
[7] A. Bartoszewicz, S. Gła̧b, Strong algebrability of sets of sequences and functions, to appear in Proc. Amer. Math. Soc. DOI: http://dx.doi.org/10.1090/S0002-9939-2012-11377-2
[8] A. Bartoszewicz, S. Gła̧b, Algebrability of conditionally convergent series with Cauchy product, J. Math. Anal. Appl. 385 (2012) 693-697.
[9] L. Bernal-González, Dense-lineability in spaces of continuous functions., Proc. Amer. Math. Soc. 136 (2008), 3163-3169.
[10] L. Bernal-González, M. Ordónez Cabrera. Spaceability of strict order integrability. J. Math. Anal. Appl. 385 (2012), no. 1, 303-309.
[11] C. Ferens, On the range of purely atomic probability measures, Studia Math. 77 (1984), pp. 261-263.
[12] F.J. García-Pacheco, M. Martín, J.B. Seoane-Sepúlveda, Lineability, spaceability and algebrability of certain subsets of function spaces, Taiwanese J. Math. 13 (2009), no. 4, 1257-1269.
[13] F.J. García-Pacheco, N. Palmberg, J.B. Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 (2007) 929-939.
[14] V. I. Gurarii, Subspaces and bases in spaces of continuous functions, (Russian) Dokl. Akad. Nauk SSSR 1671966 971-973.
[15] V.I. Gurariy, L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004), no. 1, 62-72.
[16] J. A. Guthrie, J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), no. 2, 323-327.
[17] R. Jones, Achievement sets of sequences, Am. Math. Mon. 118 (2011), no. 6, 508521.
[18] S. Kakeya, On the partial sums of an infinite series, Tôhoku Sci. Rep. 3, no. 4 (1914), 159-164.
[19] A.S. Kechris, Classical Descriptive Set Theory Nowy Jork: Springer-Verlag, (1995), Graduate Texts in Mathematics (v. 156).
[20] J.E. Nymann, R.A. Sáenz, On the paper of Guthrie and Nymann on subsums of infinite series, Colloq. Math. 83 (2000) 1-4.
[21] A.D. Weinstein, B.E. Shapiro, On the structure of a set of $\bar{\alpha}$-representable numbers, Izv. Vysš. Učebn. Zaved. Matematika 24 (1980) 8-11.
T.Banakh: Ivan Franko University of Lviv (Ukraine) and Jan Kochanowski Uniwersity in Kielce (Poland)

E-mail address: t.o.banakh@gmail.com

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

E-mail address: arturbar@p.lodz.pl

Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland

E-mail address: szymon.glab@p.lodz.pl

Institute of Mathematics, Technical University of Lódź, Wólczańska 215, 93-005 Łódź, Poland

E-mail address: szymonikemilka@wp.pl

[^0]: 1991 Mathematics Subject Classification. Primary: 40A05; Secondary: 15A03.
 Key words and phrases. subsums of series, achievement set of sequence, algebrability, strong algebrability, lineability, spaceability.

